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1 Find 22 + 42 + . . . + (2n)2. [2]

Hence find 12 − 22 + 32 − 42 + . . . − (2n)2, simplifying your answer. [3]

2 Let A = (2 3
0 1

). Prove by mathematical induction that, for every positive integern,

An = (2n 3(2n − 1)
0 1

) . [5]

3 Find a cubic equation with rootsα, β andγ , given that

α + β + γ = −6, α2 + β2 + γ 2 = 38, αβγ = 30. [3]

Hence find the numerical values of the roots. [3]

4 The curveC has equation

2xy2 + 3x2y = 1.

Show that, at the pointA (−1, 1) onC,
dy
dx

= −4. [3]

Find the value of
d2y

dx2
at A. [5]

5 Let

In = ã
1
4
π

0
tann x dx,

wheren ≥ 0. Use the fact that tan2x = sec2x − 1 to show that, forn ≥ 2,

In = 1
n − 1

− In−2. [4]

Show thatI8 = 1
7 − 1

5 + 1
3 − 1+ 1

4π. [4]

6 The curvesC1 andC2 have polar equations

C1: r = a,

C2: r = 2a cos 2θ, for 0≤ θ ≤ 1
4π,

wherea is a positive constant. SketchC1 andC2 on the same diagram. [3]

The curvesC1 andC2 intersect at the point with polar coordinates(a, β). State the value ofβ. [1]

Show that the area of the region bounded by the initial line, the arc ofC1 from θ = 0 toθ = β , and the
arc ofC2 from θ = β to θ = 1

4π is

a2(16π − 1
8

√
3). [4]
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7 A curveC has parametric equationsx = et cost, y = et sint, for 0≤ t ≤ π. Find the arc length ofC.
[4]

Find the area of the surface generated whenC is rotated through 2π radians about thex-axis. [7]

8 Find the general solution of the differential equation

d2x

dt2
+ 2

dx
dt

+ 5x = 10 sint. [6]

Find the particular solution, given thatx = 5 and
dx
dt

= 2 whent = 0. [4]

State an approximate solution for large positive values oft. [1]

9 The curveC with equation

y = ax2 + bx + c
x − 1

,

wherea, b and c are constants, has two asymptotes. It is given thaty = 2x − 5 is one of these
asymptotes.

(i) State the equation of the other asymptote. [1]

(ii) Find the value ofa and show thatb = −7. [3]

(iii) Given also thatC has a turning point whenx = 2, find the value ofc. [3]

(iv) Find the set of values ofk for which the liney = k does not intersectC. [4]

10 The linesl1 andl2 have equations

l1: r = 6i+ 5j+ 4k+ λ(i + j + k) and l2 : r = 6i+ 5j+ 4k+ µ(4i+ 6j+ k).
Find a cartesian equation of the planeΠ containingl1 andl2. [4]

Find the position vector of the foot of the perpendicular from the point with position vectori+ 10j+ 3k
to Π. [4]

The linel3 has equationr = i + 10j+ 3k + ν(2i− 3j+ k). Find the shortest distance betweenl1 andl3.
[5]

[Question 11 is printed on the next page.]
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11 Answer onlyone of the following two alternatives.

EITHER

A 3 × 3 matrixA has eigenvalues−1, 1, 2, with corresponding eigenvectors

( 0
1

−1
), (−1

0
1
), (1

1
0
),

respectively. Find

(i) the matrixA,

(ii) A2n, wheren is a positive integer.
[14]

OR

Determine the rank of the matrix

A =


1 −1 −1 1
2 −1 −4 3
3 −3 −2 2
5 −4 −6 5

 . [3]

Show that if

Ax = p


1
2
3
5

 + q

−1
−1
−3
−4

 + r

−1
−4
−2
−6

 ,

wherep, q andr are given real numbers, then

x =


p + λ

q + λ

r + λ

λ

 ,

whereλ is real. [4]

Find the values ofp, q andr such that

p


1
2
3
5

 + q

−1
−1
−3
−4

 + r

−1
−4
−2
−6

 =


3
7
8

15

 . [3]

Find the solutionx =


α

β

γ

δ

 of the equationAx =


3
7
8

15

 for which α2 + β2 + γ 2 + δ 2 = 11
4 . [4]
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